Корзина
513 отзывов
купить тарифный счетчик с ПЗР NIK 2303 AP6T.1002.MC.11Купить со скидкой
УкраинаХарьковская областьХарьковул. Мало-Панасовская, 2
+38 050 788-38-86
+380973190929
+380577120391
+380949769910
ЭЛЕКТРО, ВОДОСЧЕТЧИКИ el-misto@ukr.net, info@elmisto.com.ua (093) 811-53-94
Корзина
Наличие документов
Знак Наличие документов означает, что компания загрузила свидетельство о государственной регистрации для подтверждения своего юридического статуса компании или физического лица-предпринимателя.

Принципы работы трансформаторов тока и их классификация

Принципы работы трансформаторов тока и их классификация

Если вы ничего не знаете о трансформаторах тока, тогда вам сюда

Трансформа́тор то́ка — трансформатор, первичная обмотка которого подключена к источнику тока, а вторичная обмотка замыкается на измерительные или защитные приборы, имеющие малые внутренние сопротивления.

Измерительный трансформа́тор то́ка — трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке.

Трансформаторы тока широко используются для измерения электрического тока и в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, часто составляющим сотни киловольт.

схема трансформаторов токаПростой пример необходимости использования трансформаторов тока – когда ввиду большой потребляемой мощности, значение измеряемого тока превышает допустимое, безопасное для прибора учёта. Т. е. при прямом включении нагрузки такой потребляемой мощности, токовые катушки счётчика попросту сгорят, что приведёт к его выходу из строя.

В этом случае электросчётчик подключается через трансформаторы тока.

Устройство и схема трансформатора тока. Основной элемент конструкции трансформатора тока – это магнитопровод с двумя несвязанными между собой обмотками (первичная W1 и вторичная W2).  

Первичная обмотка – имеет большее сечение и меньшее количество витков,  включается последовательно – в разрыв цепи (контакты Л1 и Л2), вторичная – к токовым катушкам электросчётчика (контакты И1, И2).

Первичная обмотка трансформатора тока может быть рассчитана  на ток от 5 до 15 000 А. Вторичная, включаемая в измерительную цепь – обычно, на 5 А. Их отношение (тока первичной обмотки к токам вторичной) называют коэффициентом трансформации.

Таким образом, для правильного расчёта потреблённой электроэнергии разницу в показаниях электросчётчика нужно умножить на коэффициент трансформации. Например, для трансформаторов тока 100/5, коэффициент трансформации будет равен 20.

Стоит заметить, что по исполнению и способу подключения в качестве  первичной обмотки трансформатор тока может иметь проходную шину, которая проходит через его корпус, или-же отсутствовать вовсе. В этом случае имеется «окно» - отверстие, в которое пропускается питающий фото трансформаторов токапровод или шина.

К трансформаторам тока предъявляются высокие требования по точности. Как правило, трансформатор тока выполняют с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков).

Особенности конструкции

Вторичные обмотки трансформатора тока (не менее одной на каждый магнитопровод) обязательно нагружаются. Сопротивление нагрузки строго регламентировано требованиями к точности коэффициента трансформации. Незначительное отклонение сопротивления вторичной цепи от номинала (указанного на табличке) по модулю полного Z или cos ф (обычно cos = 0.8 индукт.) приводит к изменению погрешности преобразования и возможно ухудшению измерительных качеств трансформатора. Значительное увеличение сопротивления нагрузки создает высокое напряжение во вторичной обмотке, достаточное для пробоя изоляции трансформатора, что приводит к выходу трансформатора из строя, а также создает угрозу жизни обслуживающего персонала. Кроме того, из-за возрастающих потерь в сердечнике магнитопровода, трансформатор начинает перегреваться, что так же может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою. Полностью разомкнутая вторичная обмотка ТТ не создает компенсирующий магнитный поток в сердечнике, что приводит к перегреву магнитопровода и его выгоранию. При этом магнитный поток, созданный первичной обмоткой имеет очень высокое значение и потери в магнитопроводе сильно нагревают его. В конструктивном отношении трансформаторы тока выполнены в виде сердечника, шихтованного из холоднокатанной кремнистой трансформаторной стали, на которую наматываются одна или несколько вторичных изолированных обмоток, первичная обмотка может быть выполнена в виде также намотанного на сердечник, либо в виде шины, в некоторых конструкциях вообще не предусмотрена встроенная первичная обмотка; первичная обмотка выполняется потребителем. пропусканием провода через специальное окно. Обмотки и сердечник заключаются в корпус для изоляции и предохранения обмоток. В некоторых современных конструкциях трансформаторов тока сердечник выполняется из нанокристаллических (аморфных сплавов), для расширения диапазона, в котором трансформатор работает в классе точности.

Коэффициент трансформации измерительных трансформаторов тока является их основной характеристикой. Номинальный (идеальный) коэффициент указывается на шильдике трансформатора в виде отношения номинального тока первичной (первичных) обмоток к номинальному току вторичной (вторичных) обмоток, например, 100/5 А или 10-15-50-100/5 А (для первичных обмоток с несколькими секциями витков). При этом реальный коэффициент трансформации несколько отличается от номинального. Это отличие характеризуется величиной погрешности преобразования, состоящей из двух составляющих - синфазной и квадратурной. Первая характеризует отклонение по величине, вторая отклонение по фазе вторичного тока реального от номинального. Эти величины регламентированы ГОСТами и служат основой для присвоения трансформаторам тока классов точности при проектировании и изготовлении. Поскольку в магнитных системах имеют место потери связанные с намагничиванием и нагревом магнитопровода, вторичный ток оказывается меньше номинального (т.е. погрешность отрицательная) у всех трансформаторов тока. В связи с этим для улучшения характеристик и внесения положительного смещения в погрешность преобразования применяют витковую коррекцию. А это означает, что коэффициент трансформации у таких откорректированных трансформаторов не соответствует привычной формуле соотношений витков первичной и вторичной обмоток.

Классификация трансформаторов тока

Трансформаторы тока классифицируются по различным признакам:

· по числу коэффициентов трансформации: с одним коэффициентом трансформации; с несколькими коэффициентами трансформации, получаемыми изменением числа витков первичной или вторичной обмотки, или обеих обмоток, или применением нескольких вторичных обмоток с различным числом витков, соответствующим различному номинальному вторичному току.
· по числу ступеней трансформации: одноступенчатые; каскадные (многоступенчатые), т. е. с несколькими ступенями трансформации тока.
· по выполнению первичной обмотки: одновитковые; многовитковые.
Одновитковые трансформатоьры тока имеют 2 разновидности: без собственной первичной обмотки; с собственной первичной обмоткой. Одновитковые трансформаторы тока, не имеющие собственной первичной обмотки, выполняются встроенными, шинными или разъемными.

1. По назначению трансформаторы тока можно разделить на измерительные, защитные, промежуточные (для включения измерительных приборов в токовые цепи релейной защиты, для выравнивания токов в схемах дифференциальных защит и т. д.) и лабораторные (высокой точности, а также со многими коэффициентами трансформации).

2. По роду установки различают трансформаторы тока: а) для наружной установки (в открытых распределительных устройствах); б) для закрытой установки; в) встроенные в электрические аппараты и машины: выключатели, трансформаторы, генераторы и т. д.; г) накладные - надевающиеся сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора); д) переносные (для контрольных измерений и лабораторных испытаний).

3. По конструкции первичной обмотки трансформаторы тока делятся на:

а) многовитковые (катушечные, с петлевой обмоткой и с восьмерочной обмоткой); б) одновитковые (стержневые); в) шинные.

4. По способу установки трансформаторы тока для закрытой и наружной установки разделяются на:

а) проходные; б) опорные.

5. По выполнению изоляции трансформаторы тока можно разбить на группы: а) с сухой изоляцией (фарфор, бакелит, литая эпоксидная изоляция и т. д.); б) с бумажно-масляной изоляцией и с конденсаторной бумажно-масляной изоляцией; в) газонаполненные (элегаз); г) с заливкой компаундом.

6. По числу ступеней трансформации имеются трансформаторы тока:

а) одноступенчатые; б) двухступенчатые (каскадные).

7. По рабочему напряжению различают трансформаторы:

а) на номинальное напряжение свыше 1000 В; б) на номинальное напряжение до 1000 В.

Параметры трансформаторов тока

Важными параметрами трансформаторов тока являются коэффициент трансформации и класс точности.

Коэффициент трансформации
Коэффициент трансформации трансформатора тока определяет номинал измерения тока и означает при каком первичном токе во вторичной цепи будет протекать определённый стандартный ток (чаще всего это 5 А, редко 1 А). Первичные токи трансформаторов тока определяются из ряда стандартизированных номинальных токов. Коэффициент трансформации трансформатора тока обычно записывается в виде отношения номинального первичного тока ко номинальному вторичному в виде дроби, например: 75/5 (при протекании в первичной обмотке тока 75 А - 5А во вторичной обмотке, замкнутой на измерительные элементы) или 1000/1 (при протекании в первичной цепи 1000 А, во вторичных цепях будет протекать ток 1 А. Иногда трансформаторы тока могут иметь переменный коэффициент трансформации, что возможно пересоединением первичных обмоток из параллельного в последовательное соединения (например такое решение применяется в трансформаторах тока ТФЗМ - 110) либо наличием отводов на первичной или вторичной обмоток (последнее применяется в лабораторных трансформаторах тока типа УТТ) или же изменением количества витков первичного провода, пропускаемого в окно трансформаторов тока без собственной первичной обмотки (трансформаторы тока УТТ).

Класс точности
Для определения класса точности трансформатора тока вводятся понятия:

погрешности по току ΔI = I2 - I1’, где I2- действительный вторичный ток, I1’ =I1/n - приведённый первичный ток, I1 - первичный ток , n - коэффициент трансформатора тока;
погрешности по углу δ = α1 - α2, где α1 - теоретический угол сдвига фаз между первичным и вторичным током α1 = 180°,α2 - действительный угол между первичным и вторичным током;
относительной полной погрешности ε%=(|I1’-I2|)/|I1’|, где |I1’| - модуль комплексного приведённого тока.
Погрешности по току и углу объясняются действием тока намагничивания. Для промышленных трансформаторов тока устанавливаются следующие классы точности : 0,1 0,5; 1; 3, 10Р. Согласно ГОСТ 7746 - 2001 класс точности соответствует погрешность по току ΔI, погрешность по углу равна: ±40’ (класс 0,5); ±80’ (класс 1), для классов 3 и 10Р угол не нормируется. При этом трансформатор тока может быть в классе точности только при сопротивлении во вторичных цепи не более установленного и тока в первичной цепи от 0,05 до 1,2 номинального тока трансформатора. Для трансформаторов тока с добавлением сзади класса точности литеры S (например 0,5S) означает, что трансформатор будет находится в классе точности от 0,01 до 1,2 номинального тока. Класс 10Р (по старому ГОСТ Д) предназначен для питания цепей защиты и нормируется по относительной полной погрешности, которая не должна превышать 10% при максимальном токе к.з. и заданном сопротивления вторичной цепи. Согласно международному стандарту МЭК (IEС 60044-01) трансформаторы тока должны находится в классе точности при протекании по первичной его обмотке тока 0,2 ÷ 200% номинального, что обычно достигается изготовлением сердечника из нанокристаллических сплавов.

Обозначения трансформаторов тока
Отечественные трансформаторы тока имеют следующее обозначения:

первая буква в обозначении "Т" - трансформатор тока
вторая буква - разновидность конструкции: "П" - проходной, "О" - опорный, "Ш" - шинный, "Ф" - в фарфоровой покрышке
третья буква - материал изоляции: "М" - масляная, "Л" - литая изоляция, "Г" - газовая (элегаз).
Далее через тире пишется класс изоляции трансформатора тока, климатическое исполнение и категория установки Например: ТПЛ - 10УХЛ4 100/5А: "трансформатор тока проходной с литой изоляцией с классом изоляции 10 кВ, для умеренного и холодного климата, категории 4 с коэффициентом трансформации 100/5" (читается как "сто на пять").

Замечания
В отличии от трасформатора напряжения, у трансформатора тока режим холостого хода является аварийным. Результирующий магнитный поток в магнитопроводе трансформатора тока равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя ("пожар железа"). Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединённого к нему измерительного прибора. В случае необходимости отключения измерительного прибора от вторичной обмотки трансформатора тока, ее обязательно нужно закоротить.
Согласно ПУЭ вторичная обмотка трансформатора тока (для защиты от поражения электрического тока при пробое изоляции, либо при индуктировании высокого напряжения из - за обрыва вторичной цепи) обязательно должна заземляться.

Другие статьи